Preparation of a 1000 ppm Barium Standard Solution

1) Calculate the Molecular Weight of **BaCl₂• 2H₂O**:

Atomic Weight of	Ва	137.34	1 part Ba	137.34
Atomic Weight of	CI	35.45	2 part CI	70.90
Molecular Weight of	H₂O	18.02	2 part H₂O	<u>36.04</u>
Molecular Weight of	BaCl ₂ • 2H ₂ O			244.28

That means 244.28 g of BaCl₂ • 2H₂O contain 137.34 g of Ba

- A 1000 ppm Barium Standard solution contains 1 g Barium per Litre, or 0.1 g Barium in 100 mL
- 3) From 1) we calculate the Ratio of Atomic Weight of **BaCl₂• 2H₂O**:

Molecular Weight of
$$BaCl_2 \cdot 2H_2O = 244.28 = 1.779$$

Atomic Weight of $Ba = 137.34$

That means 1 g of Ba is in 1.779 g of BaCl₂ • 2H₂O

4) From 3) we calculate 0.1 g **Ba** is in 0.1779 g of **BaCl₂ • 2H₂O**.

Use a 100 mL Volumetric flask and dissolve 0.178 g of **BaCl₂• 2H₂O** in 90 mL of distilled water. Then fill up with distilled water to the 100 mL mark.

Now you have a 1000 ppm Barium Standard Solution.

Keep this Standard Solution in a tightly closed plastic bottle.

You can use a 1000 ppm Standard Solution for the next 6 months.

Diluted Standard Solutions should be used only for 1 day.